5G NR TBS (Transport Block Size Calculation)

as per 3GPP TS 38.214 v15.2.0 Rel-15

5.1.3.1 Modulation order and target code rate determination

For the PDSCH scheduled by a PDCCH with DCI format 1_0 or format 1_1 with CRC scrambled by C-RNTI, new-RNTI, TC-RNTI, CS-RNTI, SI-RNTI, RA-RNTI, or P-RNTI.

if the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam256', and the PDSCH is scheduled by a PDCCH with a DCI format 1 1 and the CRC is scrambled by C-RNTI or CS-RNTI

the UE shall use I_{MCS} and Table 5.1.3.1-2 to determine the modulation order (Q_m) and Target code rate (R) used in the physical downlink shared channel.

elseif the UE is not configured with new-RNTI, the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam64LowSE', and the PDSCH is scheduled with C-RNTI, and the PDSCH is assigned by a PDCCH in a UE-specific search space

 the UE shall use I_{MCS} and Table 5.1.3.1-3 to determine the modulation order (Q_m) and Target code rate (R) used in the physical downlink shared channel.

elseif the UE is configured with new-RNTI, and the PDSCH is scheduled with new-RNTI

the UE shall use I_{MCS} and Table 5.1.3.1-3 to determine the modulation order (Q_m) and Target code rate (R) used in the physical downlink shared channel.

elseif the UE is not configured with the higher layer parameter mcs-Table given by SPS-config, the higher layer parameter mcs-Table given by PDSCH-Config is set to 'qam256', the PDSCH is scheduled with CS-RNTI, and the PDSCH is assigned by a PDCCH with DCI format 1_1

the UE shall use I_{MCS} and Table 5.1.3.1-2 to determine the modulation order (Q_m) and Target code rate (R) used in the physical downlink shared channel.

elseif the UE is configured with the higher layer parameter mcs-Table given by SPS-config set to 'qam64LowSE', and the PDSCH is scheduled with CS-RNTI

the UE shall use I_{MCS} and Table 5.1.3.1-3 to determine the modulation order (Q_m) and Target code rate (R) used in the physical downlink shared channel.

else

 the UE shall use I_{MCS} and Table 5.1.3.1-1 to determine the modulation order (Q_m) and Target code rate (R) used in the physical downlink shared channel.

end

The UE is not expected to decode a PDSCH scheduled with P-RNTI, RA-RNTI, SI-RNTI and $Q_m > 2$

	Modulation Order	Target code Rate R x [1024]	Spectral efficiency		
I _{MCS}	Qou	,			
0	2	120	0.2344		
1	2	157	0.3066		
2	2	193	0.3770		
3	2	251	0.4902		
4	2	308	0.6016		
5	2	379	0.7402		
6	2	449	0.8770		
7	2	526	1.0273		
8	2	602	1.1758		
9	2	679	1.3262		
10	4	340	1.3281		
11	4	378	1.4766		
12	4	434	1.6953		
13	4	490	1.9141		
14	4	553	2.1602		
15	4	616	2.4063		
16	4	658	2.5703		
17	6	438	2.5664		
18	6	466	2.7305		
19	6	517	3.0293		
20	6	567	3.3223		
21	6	616	3.6094		
22	6	666	3.9023		
23	6	719	4.2129		
24	6	772	4.5234		
25	6	822	4.8164		
26	6	873	5.1152		
27	6	910	5.3320		
28	6	948	5.5547		
29	2	reserved			
30	4	reserved			
31	6	reserved			

Table 5.1.3.1-1: MCS index table 1 for PDSCH

MCSIndex	Modulation Order	Target code Rate R x [1024]	Spectral			
I _{MCS}	Q_m	raiget code Rate A X [1024]	efficiency			
0	2	120	0.2344			
1	2	193	0.3770			
2	2	308	0.6016			
3	2	449	0.8770			
4	2	602	1.1758			
5	4	378	1.4766			
6	4	434	1.6953			
7	4	490	1.9141			
8	4	553	2.1602			
9	4	616	2.4063			
10	4	658	2.5703			
11	6	466	2.7305			
12	6	517	3.0293			
13	6	567	3.3223			
14	6	616	3.6094			
15	6	666	3.9023			
16	6	719	4.2129			
17	6	772	4.5234			
18	6	822	4.8164			
19	6	873	5.1152			
20	8	682.5	5.3320			
21	8	711	5.5547			
22	8	754	5.8906			
23	8	797	6.2266			
24	8	841	6.5703			
25	8	885	6.9141			
26	8	916.5	7.1602			
27	8	948	7.4063			
28	2	reserved				
29	4	reserved				
30	6	reserved				
31	8	reserved				

Table 5.1.3.1-2: MCS index table 2 for PDSCH

MCSIndex	Modulation Order	Spectral			
I _{MCS}	Q_{α}	Target code Rate R x [1024]	efficiency		
0	2	30	0.0586		
1	2	40	0.0781		
2	2	50	0.0977		
3	2	64	0.1250		
4	2	78	0.1523		
5	2	99	0.1934		
6	2	120	0.2344		
7	2	157	0.3066		
8	2	193	0.3770		
9	2	251	0.4902		
10	2	308	0.6016		
11	2	379	0.7402		
12	2	449	0.8770		
13	2	526	1.0273		
14	2	602	1.1758		
15	4	340	1.3281		
16	4	378	1.4766		
17	4	434	1.6953		
18	4	490	1.9141		
19	4	553	2.1602		
20	4	616	2.4063		
21	6	438	2.5664		
22	6	466	2.7305		
23	6	517	3.0293		
24	6	567	3.3223		
25	6	616	3.6094		
26	6	666	3.9023		
27	6	719	4.2129		
28	6	772 4.5234			
29	2	reserved			
30	4	reserved			
31	6	reserved			

Table 5.1.3.1-3: MCS index table 3 for PDSCH

In case the higher layer parameter maxNrofCodeWordsScheduledByDCI indicates that two codeword transmission is enabled, then a transport block is disabled by DCI format 1_1 if $I_{MCS} = 26$ and if $y_{id} = 1$ for the corresponding transport block, otherwise the transport block is enabled. If both transport blocks are enabled, transport block 1 and 2 are mapped to codeword 0 and 1 respectively. If only one transport block is enabled, then the enabled transport block is always mapped to the first codeword.

For the PDSCH assigned by a PDCCH with DCI format 1_0 or format 1_1 with CRC scrambled by C-RNTI, new-RNTI, TC-RNTI, or SI-RNTI, if Table 5.1.3.1-2 is used and $0 \le I_{MCS} \le 27$, or a table other than Table 5.1.3.1-2 is used and $0 \le I_{MCS} \le 28$, the UE shall, except if the transport block is disabled in DCI format 1_1 , first determine the TBS as specified below:

- 1) The UE shall first determine the number of REs (N_{RE}) within the slot.
 - A UE first determines the number of REs allocated for PDSCH within a PRB (N_{RE}) by $N_{RE}^{'} = N_{sc}^{RB} \cdot N_{symb}^{sh} N_{DMRS}^{PRB} N_{oh}^{PRB}$, where $N_{sc}^{RB} = 12$ is the number of subcarriers in a physical resource block, N_{symb}^{sh} is the number of symbols of the PDSCH allocation within the slot, N_{DMRS}^{PRB} is the number of REs for DM-RS per PRB in the scheduled duration including the overhead of the DM-RS CDM groups without data, as indicated by DCI format 1_1 or as described for format 1_0 in Subclause 5.1.6.2, and N_{oh}^{PRB} is the overhead configured by higher layer parameter xOverhead in PDSCH-ServingCellConfig. If the xOverhead in PDSCH-ServingCellconfig is not configured (a value from 0, 6, 12, or 18), the N_{oh}^{PRB} is set to

- 0. If the PDSCH is scheduled by PDCCH with a CRC scrambled by SI-RNTI, RA-RNTI or P-RNTI, N_{oh}^{PRB} is assumed to be 0.
- A UE determines the total number of REs allocated for PDSCH (N_{RE}) by $N_{RE} = \min \left(156, N_{RE}^{'}\right) \cdot n_{RRB}$, where n_{PRB} is the total number of allocated PRBs for the UE.
- 2) Intermediate number of information bits (N_{info}) is obtained by $N_{info} = N_{RE} R Q_m v$.

If
$$N_{\inf o} \leq 3824$$

Use step 3 as the next step of the TBS determination

else

Use step 4 as the next step of the TBS determination end if

- 3) When $N_{info} \leq 3824$, TBS is determined as follows
 - quantized intermediate number of information bits $N_{\inf o}' = \max \left(24, 2^n \left\lfloor \frac{N_{\inf o}}{2^n} \right\rfloor \right)$, where $n = \max \left(3, \left\lfloor \log_2(N_{\inf o}) \right\rfloor 6\right)$.
 - use Table 5.1.3.2-2 find the closest TBS that is not less than $N_{\rm info}^{'}$.

Index	TBS	Index	TBS	Index	TBS	Index	TBS
1	24	31	336	61	1288	91	3624
2	32	32	352	62	1320	92	3752
3	40	33	368	63	1352	93	3824
4	48	34	384	64	1416		
5	56	35	408	65	1480		
6	64	36	432	66	1544		
7	72	37	456	67	1608		
8	80	38	480	68	1672		
9	88	39	504	69	1736		
10	96	40	528	70	1800		
11	104	41	552	71	1864		
12	112	42	576	72	1928		
13	120	43	608	73	2024		
14	128	44	640	74	2088		
15	136	45	672	75	2152		
16	144	46	704	76	2216		
17	152	47	736	77	2280		
18	160	48	768	78	2408		
19	168	49	808	79	2472		
20	176	50	848	80	2536		
21	184	51	888	81	2600		
22	192	52	928	82	2664		
23	208	53	984	83	2728		
24	224	54	1032	84	2792		
25	240	55	1064	85	2856		
26	256	56	1128	86	2976		
27	272	57	1160	87	3104		
28	288	58	1192	88	3240		
29	304	59	1224	89	3368		
30	320	60	1256	90	3496		

Table 5.1.3.2-2: TBS for $N_{info} \le 3824$

- When N_{info} >3824, TBS is determined as follows.
 - quantized intermediate number of information bits $N_{info} = \max\left(3840, 2^n \times round\left(\frac{N_{info} 24}{2^n}\right)\right)$, where $n = \lfloor \log_2(N_{info} 24) \rfloor 5$ and ties in the round function are broken towards the next largest integer.
 - if R≤1/4

$$TBS = 8 \cdot C \cdot \left[\frac{N'_{\inf o} + 24}{8 \cdot C} \right] - 24 \text{, where } C = \left[\frac{N'_{\inf o} + 24}{3816} \right]$$

else

if $N'_{inf,o} > 8424$

$$TBS = 8 \cdot C \left[\frac{N'_{\text{inf }o} + 24}{8 \cdot C} \right] - 24$$
, where $C = \left[\frac{N'_{\text{inf }o} + 24}{8424} \right]$

else

$$TBS = 8 \cdot \left\lceil \frac{N_{\text{inf } o} + 24}{8} \right\rceil - 24$$

end if

end if

else if Table 5.1.3.1-2 is used and $28 \le I_{MCS} \le 31$,

 the TBS is assumed to be as determined from the DCI transported in the latest PDCCH for the same transport block using 0 ≤ I_{MCS} ≤ 27. If there is no PDCCH for the same transport block using 0 ≤ I_{MCS} ≤ 27, and if the initial PDSCH for the same transport block is semi-persistently scheduled, the TBS shall be determined from the most recent semi-persistent scheduling assignment PDCCH.

else

- the TBS is assumed to be as determined from the DCI transported in the latest PDCCH for the same transport block using 0 ≤ I_{MCS} ≤ 28. If there is no PDCCH for the same transport block using 0 ≤ I_{MCS} ≤ 28, and if the initial PDSCH for the same transport block is semi-persistently scheduled, the TBS shall be determined from the most recent semi-persistent scheduling assignment PDCCH.